calculations of linac photon dose distributions in homogeneous phantom using spline

نویسندگان

hamid-reza sadoughi medical physics research center, medical physics department, faculty of medicine, mashhad university of medical sciences, mashhad, iran

shahrokh nasseri medical physics research center, medical physics department, faculty of medicine, mashhad university of medical sciences, mashhad, iran

mahdi momennezhad medical physics research center, medical physics department, faculty of medicine, mashhad university of medical sciences, mashhad, iran imam reza hospital, mashhad university of medical sciences, mashhad, iran

hadi sadoghi-yazdi department of computer engineering, ferdowsi university of mashhad, mashhad,

چکیده

introduction relative dose computation is a necessary step in radiation treatment planning. therefore, finding an approach that is both fast and accurate seems to be necessary. the purpose of this work was to investigate the feasibility of natural cubic spline to reconstruct dose maps for linear accelerator radiation treatment fields in comparison with those of the simulation. materials and methods a natural cubic spline algorithm was used to reproduce dose calculations of linac radiation treatment fields resulting from geant4 application for tomographic emission (gate) simulation. the spline algorithm was used to compute percent depth dose of radiation therapy fields for 6 mv x-rays, which were calculated by simulation of elekta compact linac. it reconstructed 2-dimensional dose maps and created isodose distributions. this dose maps were evaluated and compared with the simulation, where the γ -index was used. results a good agreement was found between the doses calculated from the simulation and the spline. in particular, an average γ-index passing rate of 0.24 was obtained for sample percent depth dose distributions, and an average γ -index passing rate of 0.20 was observed for sample dose profiles. conclusion natural cubic spline has been established to calculate dose maps from field characteristics. the feasibility and possibility of natural cubic spline to calculate dose maps for linac radiation therapy fields in a homogeneous phantom has been demonstrated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculations of Linac Photon Dose Distributions in Homogeneous Phantom Using Spline

Introduction Relative dose computation is a necessary step in radiation treatment planning. Therefore, finding an approach that is both fast and accurate seems to be necessary. The purpose of this work was to investigate the feasibility of natural cubic spline to reconstruct dose maps for linear accelerator radiation treatment fields in comparison with those of the simulation. Materials and Met...

متن کامل

Comparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation

Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous pha...

متن کامل

Dose calculations accuracy of TiGRT treatment planning system for small IMRT beamlets in heterogeneous lung phantom

Background: Accurate dose calculations in small beamlets and lung material have been a great challenge for most of treatment planning systems (TPS).  In the current study, the dose calculation accuracy of TiGRT TPS was evaluated for small beamlets in water and lung phantom by comparison to Monte Carlo (MC) calculations. Materials and Methods: The head of Siemens Oncor-impression linac...

متن کامل

Comparison of MCNP5 Dose Calculations inside the RANDO Phantom Irradiated with a MLC LinAc Photon Beam against Treatment Planning System PLUNC

MC treatment planning techniques provide a very accurate dose calculation compared to ‘conventional’ deterministic treatment planning systems. In the present work, PLanUNC (PLUNC), a set of software tools for radiotherapy treatment planning (RTP), is compared with MCNP5 (Monte Carlo N-Particle transport code) by calculating dose maps inside the RANDO phantom, utilized as the patient model, irra...

متن کامل

Design of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements

Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...

متن کامل

Assessing the effect of electron density in photon dose calculations.

Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accurac...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of medical physics

جلد ۱۰، شماره ۲، صفحات ۱۳۳-۱۳۸

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023